Text Regression
!pip install autokeras
import os
import numpy as np
import tensorflow as tf
from sklearn.datasets import load_files
import autokeras as ak
To make this tutorial easy to follow, we just treat IMDB dataset as a regression dataset. It means we will treat prediction targets of IMDB dataset, which are 0s and 1s as numerical values, so that they can be directly used as the regression targets.
A Simple Example
The first step is to prepare your data. Here we use the IMDB dataset as an example.
dataset = tf.keras.utils.get_file(
fname="aclImdb.tar.gz",
origin="http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz",
extract=True,
)
# set path to dataset
IMDB_DATADIR = os.path.join(os.path.dirname(dataset), "aclImdb")
classes = ["pos", "neg"]
train_data = load_files(
os.path.join(IMDB_DATADIR, "train"), shuffle=True, categories=classes
)
test_data = load_files(
os.path.join(IMDB_DATADIR, "test"), shuffle=False, categories=classes
)
x_train = np.array(train_data.data)[:100]
y_train = np.array(train_data.target)[:100]
x_test = np.array(test_data.data)[:100]
y_test = np.array(test_data.target)[:100]
print(x_train.shape) # (25000,)
print(y_train.shape) # (25000, 1)
print(x_train[0][:50]) # <START> this film was just brilliant casting <UNK>
The second step is to run the TextRegressor. As a quick demo, we set epochs to 2. You can also leave the epochs unspecified for an adaptive number of epochs.
# Initialize the text regressor.
reg = ak.TextRegressor(
overwrite=True, max_trials=1 # It tries 10 different models.
)
# Feed the text regressor with training data.
reg.fit(x_train, y_train, epochs=1, batch_size=2)
# Predict with the best model.
predicted_y = reg.predict(x_test)
# Evaluate the best model with testing data.
print(reg.evaluate(x_test, y_test))
Validation Data
By default, AutoKeras use the last 20% of training data as validation data. As
shown in the example below, you can use validation_split
to specify the
percentage.
reg.fit(
x_train,
y_train,
# Split the training data and use the last 15% as validation data.
validation_split=0.15,
)
You can also use your own validation set instead of splitting it from the
training data with validation_data
.
split = 5
x_val = x_train[split:]
y_val = y_train[split:]
x_train = x_train[:split]
y_train = y_train[:split]
reg.fit(
x_train,
y_train,
epochs=1,
# Use your own validation set.
validation_data=(x_val, y_val),
batch_size=2,
)
Customized Search Space
For advanced users, you may customize your search space by using AutoModel instead of TextRegressor. You can configure the TextBlock for some high-level configurations. You can also do not specify these arguments, which would leave the different choices to be tuned automatically. See the following example for detail.
input_node = ak.TextInput()
output_node = ak.TextBlock()(input_node)
output_node = ak.RegressionHead()(output_node)
reg = ak.AutoModel(
inputs=input_node, outputs=output_node, overwrite=True, max_trials=1
)
reg.fit(x_train, y_train, epochs=1, batch_size=2)
Data Format
The AutoKeras TextRegressor is quite flexible for the data format.
For the text, the input data should be one-dimensional For the regression targets, it should be a vector of numerical values. AutoKeras accepts numpy.ndarray.
We also support using tf.data.Dataset format for the training data.
train_set = tf.data.Dataset.from_tensor_slices(((x_train,), (y_train,))).batch(
2
)
test_set = tf.data.Dataset.from_tensor_slices(((x_test,), (y_test,))).batch(2)
reg = ak.TextRegressor(overwrite=True, max_trials=2)
# Feed the tensorflow Dataset to the regressor.
reg.fit(train_set.take(2), epochs=1)
# Predict with the best model.
predicted_y = reg.predict(test_set.take(2))
# Evaluate the best model with testing data.
print(reg.evaluate(test_set.take(2)))
Reference
TextRegressor, AutoModel, TextBlock, ConvBlock, TextInput, RegressionHead.