Skip to content

Node

[source]

ImageInput

autokeras.ImageInput(name=None, **kwargs)

Input node for image data.

The input data should be numpy.ndarray. The shape of the data should be should be (samples, width, height) or (samples, width, height, channels).

Arguments

  • name str | None: String. The name of the input node. If unspecified, it will be set automatically with the class name.

[source]

Input

autokeras.Input(name=None, **kwargs)

Input node for tensor data.

The data should be numpy.ndarray.

Arguments

  • name str | None: String. The name of the input node. If unspecified, it will be set automatically with the class name.

[source]

TextInput

autokeras.TextInput(name=None, **kwargs)

Input node for text data.

The input data should be numpy.ndarray. The data should be one-dimensional. Each element in the data should be a string which is a full sentence.

Arguments

  • name str | None: String. The name of the input node. If unspecified, it will be set automatically with the class name.

[source]

StructuredDataInput

autokeras.StructuredDataInput(column_names=None, column_types=None, name=None, **kwargs)

Input node for structured data.

The input data should be numpy.ndarray. The data should be two-dimensional with numerical or categorical values.

Arguments

  • column_names List[str] | None: A list of strings specifying the names of the columns. The length of the list should be equal to the number of columns of the data. Defaults to None.
  • column_types Dict[str, str] | None: Dict. The keys are the column names. The values should either be 'numerical' or 'categorical', indicating the type of that column. Defaults to None. If not None, the column_names need to be specified. If None, it will be inferred from the data. A column will be judged as categorical if the number of different values is less than 5% of the number of instances.
  • name str | None: String. The name of the input node. If unspecified, it will be set automatically with the class name.